文章检索
首页» 过刊浏览» 2025» Vol.10» lssue(3) 553-564     DOI : 10.3969/j.issn.2096-1693.2025.02.006
最新目录| | 过刊浏览| 高级检索
矿场光纤声波数据计算产液剖面:模型与应用
胡晓东, 蒋宗帅, 王小玮, 周福建, 赵杨, 龚浩楠, 王雅晶, 余迪明
1 中国石油大学(北京)非常规油气科学技术研究院,北京 102249 2 中国石油新疆油田公司采油工艺研究院,克拉玛依 834000 3 苏州中科地星创新技术研究所,苏州 215011
Calculation of fluid-producing profiles from mine fiber-optic acoustic data: Model and application
HU Xiaodong, JIANG Zongshuai, WANG Xiaowei, ZHOU Fujian1, ZHAO Yang, GONG Haonan, WANG Yajing, YU Diming.
1 Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China 2 Oil Production Technology Research Institute of PetroChina Xinjiang Oilfield Company, Karamay 834000, China 3 Suzhou Innovative Research Institute of Earth and Planetary Sciences Co.Ltd, Suzhou 215011, China

全文:   HTML (1 KB) 
文章导读  
摘要  生产井产液剖面的实时准确监测对油田开发动态调整具有重要指导意义,有助于评估产层产液占比、优化水平井压裂改造参数、调整生产动态。而基于分布式光纤声波技术的产液剖面测试是近年来兴起的一种新技术,具有准确度高、实时性强的优点,适用于油气田井下高温高压、狭小复杂环境。然而现有分布式光纤产业剖面监测研究多集中于理论研究及室内实验,而在矿场实际生产过程中,光纤井下信号受复杂噪声干扰,响应特征多变,缺乏利用DAS技术分析井下流动事件及产量剖面计算的成熟分析流程与模型。本文提出了一套适用于矿场产液剖面计算的模型与计算流程,在生产井开展分布式光纤声波传感监测采集不同工况光纤数据,对其进行频率分析确定有效频段,并从声波能量的角度计算产液剖面,有效解决了分布式声波光纤数据产量剖面计算的分析处理方法较少的问题。针对 3 口矿场实测数据开展分析,结果表明:此次测试在 400~800 Hz频率范围内,开关井状态下的FBE能量差值最大,能够在保留较多流动信息的情况下滤除大多数背景或环境噪声。在开井后,3 口井均存在一定的能量响应滞后情况,且在生产过程中,产层位置并不是覆盖所有深度,存在优势进液区域,但第二次开井后,整体产液剖面分布更为均匀。先后两次开关井的FBE能量强度不同,第一次生产过程的绝对FBE能量更强。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
关键词 : 分布式声学光纤传感,稠油井,矿场数据,数据分析
Abstract

The real-time and accurate monitoring of the production well fluid profile is crucial for guiding dynamic adjustments in oilfield development. It plays a critical role in evaluating the proportion of fluid produced from different production layers, optimizing parameters for horizontal well fracturing, and adjusting production dynamics. In recent years, fluid profile testing based on distributed acoustic sensing (DAS) technology has emerged as a new method with high accuracy and strong real-time capabilities. This technique is particularly suitable for the high-temperature, high-pressure, and narrow-complex downhole environments commonly found in oil and gas fields. However, most current research on distributed fiber-optic profile monitoring is focused on theoretical studies and laboratory experiments, with limited application to actual production conditions of the mining field operations. In actual production, downhole fiber-optic signals are often subject to interference from complex noise, and their response characteristics can be highly variable. Furthermore, there is a lack of mature analysis processes and models for using DAS technology to analyze downhole fluid events and calculate production profiles. This paper proposes a model and calculation process for fluid profile analysis that can be applied to mining field production scenarios. The method involves deploying distributed fiber-optic acoustic sensing to collect fiber-optic data under various operational conditions. Frequency analysis is then performed to identify effective frequency bands, and the fluid profile is calculated from the perspective of acoustic energy. This approach addresses the challenge of limited analysis methods for calculating production profiles from distributed acoustic fiber-optic data. To validate the proposed model and process, the paper analyzes data from three wells in a mining field. The results indicate that in the 400-800 Hz frequency range, the maximum difference in Fiber-Based Energy (FBE) energy occurs during well switching. This allows the system to filter out most background and environmental noise while retaining important flow-related information. After opening the wells, all three wells showed a delay in energy response. During the production phase, the production layers did not extend to all depths, and a dominant influx region was observed. However, after the second well opening, the overall fluid profile distribution became more uniform. Additionally, the intensity of the FBE energy varied between the first and second well openings, with stronger absolute FBE energy observed during the first production phase. These findings provide valuable insights into optimizing oilfield operations and improving the accuracy of fluid profile monitoring through distributed acoustic sensing technology.

Key words: distributed acoustic fiber optic sensing; heavy oil well; mine data; data analysis
收稿日期: 2025-06-13     
PACS:    
基金资助:国家自然科学基金面上项目( 水击压力波—光纤声波数据融合的多裂缝尺寸反演方法,52374019)
通讯作者: huxiaodong@cup.edu.cn
引用本文:   
胡晓东, 蒋宗帅, 王小玮, 周福建, 赵杨, 龚浩楠, 王雅晶, 余迪明. 矿场光纤声波数据计算产液剖面: 模型与应用. 石油科学通报, 2025, 10(03): 553-564 HU Xiaodong, JIANG Zongshuai, WANG Xiaowei, ZHOU Fujian1, ZHAO Yang, GONG Haonan, WANG Yajing, YU Diming. Calculation of fluid-producing profiles from mine fiber-optic acoustic data: Model and application. Petroleum Science Bulletin, 2025, 10(03): 553-564.
链接本文:  
版权所有 2016 《石油科学通报》杂志社
Baidu
map